85 research outputs found

    Pseudorandomness via the discrete Fourier transform

    Full text link
    We present a new approach to constructing unconditional pseudorandom generators against classes of functions that involve computing a linear function of the inputs. We give an explicit construction of a pseudorandom generator that fools the discrete Fourier transforms of linear functions with seed-length that is nearly logarithmic (up to polyloglog factors) in the input size and the desired error parameter. Our result gives a single pseudorandom generator that fools several important classes of tests computable in logspace that have been considered in the literature, including halfspaces (over general domains), modular tests and combinatorial shapes. For all these classes, our generator is the first that achieves near logarithmic seed-length in both the input length and the error parameter. Getting such a seed-length is a natural challenge in its own right, which needs to be overcome in order to derandomize RL - a central question in complexity theory. Our construction combines ideas from a large body of prior work, ranging from a classical construction of [NN93] to the recent gradually increasing independence paradigm of [KMN11, CRSW13, GMRTV12], while also introducing some novel analytic machinery which might find other applications

    List Decoding Tensor Products and Interleaved Codes

    Full text link
    We design the first efficient algorithms and prove new combinatorial bounds for list decoding tensor products of codes and interleaved codes. We show that for {\em every} code, the ratio of its list decoding radius to its minimum distance stays unchanged under the tensor product operation (rather than squaring, as one might expect). This gives the first efficient list decoders and new combinatorial bounds for some natural codes including multivariate polynomials where the degree in each variable is bounded. We show that for {\em every} code, its list decoding radius remains unchanged under mm-wise interleaving for an integer mm. This generalizes a recent result of Dinur et al \cite{DGKS}, who proved such a result for interleaved Hadamard codes (equivalently, linear transformations). Using the notion of generalized Hamming weights, we give better list size bounds for {\em both} tensoring and interleaving of binary linear codes. By analyzing the weight distribution of these codes, we reduce the task of bounding the list size to bounding the number of close-by low-rank codewords. For decoding linear transformations, using rank-reduction together with other ideas, we obtain list size bounds that are tight over small fields.Comment: 32 page

    Public projects, Boolean functions and the borders of Border's theorem

    Full text link
    Border's theorem gives an intuitive linear characterization of the feasible interim allocation rules of a Bayesian single-item environment, and it has several applications in economic and algorithmic mechanism design. All known generalizations of Border's theorem either restrict attention to relatively simple settings, or resort to approximation. This paper identifies a complexity-theoretic barrier that indicates, assuming standard complexity class separations, that Border's theorem cannot be extended significantly beyond the state-of-the-art. We also identify a surprisingly tight connection between Myerson's optimal auction theory, when applied to public project settings, and some fundamental results in the analysis of Boolean functions.Comment: Accepted to ACM EC 201

    Finding Skewed Subcubes Under a Distribution

    Get PDF
    Say that we are given samples from a distribution ? over an n-dimensional space. We expect or desire ? to behave like a product distribution (or a k-wise independent distribution over its marginals for small k). We propose the problem of enumerating/list-decoding all large subcubes where the distribution ? deviates markedly from what we expect; we refer to such subcubes as skewed subcubes. Skewed subcubes are certificates of dependencies between small subsets of variables in ?. We motivate this problem by showing that it arises naturally in the context of algorithmic fairness and anomaly detection. In this work we focus on the special but important case where the space is the Boolean hypercube, and the expected marginals are uniform. We show that the obvious definition of skewed subcubes can lead to intractable list sizes, and propose a better definition of a minimal skewed subcube, which are subcubes whose skew cannot be attributed to a larger subcube that contains it. Our main technical contribution is a list-size bound for this definition and an algorithm to efficiently find all such subcubes. Both the bound and the algorithm rely on Fourier-analytic techniques, especially the powerful hypercontractive inequality. On the lower bounds side, we show that finding skewed subcubes is as hard as the sparse noisy parity problem, and hence our algorithms cannot be improved on substantially without a breakthrough on this problem which is believed to be intractable. Motivated by this, we study alternate models allowing query access to ? where finding skewed subcubes might be easier

    Polynomials that Sign Represent Parity and Descartes' Rule of Signs

    Full text link
    A real polynomial P(X1,...,Xn)P(X_1,..., X_n) sign represents f:Anβ†’{0,1}f: A^n \to \{0,1\} if for every (a1,...,an)∈An(a_1, ..., a_n) \in A^n, the sign of P(a1,...,an)P(a_1,...,a_n) equals (βˆ’1)f(a1,...,an)(-1)^{f(a_1,...,a_n)}. Such sign representations are well-studied in computer science and have applications to computational complexity and computational learning theory. In this work, we present a systematic study of tradeoffs between degree and sparsity of sign representations through the lens of the parity function. We attempt to prove bounds that hold for any choice of set AA. We show that sign representing parity over {0,...,mβˆ’1}n\{0,...,m-1\}^n with the degree in each variable at most mβˆ’1m-1 requires sparsity at least mnm^n. We show that a tradeoff exists between sparsity and degree, by exhibiting a sign representation that has higher degree but lower sparsity. We show a lower bound of n(mβˆ’2)+1n(m -2) + 1 on the sparsity of polynomials of any degree representing parity over {0,...,mβˆ’1}n\{0,..., m-1\}^n. We prove exact bounds on the sparsity of such polynomials for any two element subset AA. The main tool used is Descartes' Rule of Signs, a classical result in algebra, relating the sparsity of a polynomial to its number of real roots. As an application, we use bounds on sparsity to derive circuit lower bounds for depth-two AND-OR-NOT circuits with a Threshold Gate at the top. We use this to give a simple proof that such circuits need size 1.5n1.5^n to compute parity, which improves the previous bound of 4/3n/2{4/3}^{n/2} due to Goldmann (1997). We show a tight lower bound of 2n2^n for the inner product function over {0,1}nΓ—{0,1}n\{0,1\}^n \times \{0, 1\}^n.Comment: To appear in Computational Complexit

    Better Pseudorandom Generators from Milder Pseudorandom Restrictions

    Full text link
    We present an iterative approach to constructing pseudorandom generators, based on the repeated application of mild pseudorandom restrictions. We use this template to construct pseudorandom generators for combinatorial rectangles and read-once CNFs and a hitting set generator for width-3 branching programs, all of which achieve near-optimal seed-length even in the low-error regime: We get seed-length O(log (n/epsilon)) for error epsilon. Previously, only constructions with seed-length O(\log^{3/2} n) or O(\log^2 n) were known for these classes with polynomially small error. The (pseudo)random restrictions we use are milder than those typically used for proving circuit lower bounds in that we only set a constant fraction of the bits at a time. While such restrictions do not simplify the functions drastically, we show that they can be derandomized using small-bias spaces.Comment: To appear in FOCS 201

    The Connectivity of Boolean Satisfiability: Computational and Structural Dichotomies

    Full text link
    Boolean satisfiability problems are an important benchmark for questions about complexity, algorithms, heuristics and threshold phenomena. Recent work on heuristics, and the satisfiability threshold has centered around the structure and connectivity of the solution space. Motivated by this work, we study structural and connectivity-related properties of the space of solutions of Boolean satisfiability problems and establish various dichotomies in Schaefer's framework. On the structural side, we obtain dichotomies for the kinds of subgraphs of the hypercube that can be induced by the solutions of Boolean formulas, as well as for the diameter of the connected components of the solution space. On the computational side, we establish dichotomy theorems for the complexity of the connectivity and st-connectivity questions for the graph of solutions of Boolean formulas. Our results assert that the intractable side of the computational dichotomies is PSPACE-complete, while the tractable side - which includes but is not limited to all problems with polynomial time algorithms for satisfiability - is in P for the st-connectivity question, and in coNP for the connectivity question. The diameter of components can be exponential for the PSPACE-complete cases, whereas in all other cases it is linear; thus, small diameter and tractability of the connectivity problems are remarkably aligned. The crux of our results is an expressibility theorem showing that in the tractable cases, the subgraphs induced by the solution space possess certain good structural properties, whereas in the intractable cases, the subgraphs can be arbitrary
    • …
    corecore